One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile
نویسندگان
چکیده
In the classical model of tile self-assembly, unit square tiles translate in the plane and attach edgewise to form large crystalline structures. This model of self-assembly has been shown to be capable of asymptotically optimal assembly of arbitrary shapes and, via information-theoretic arguments, increasingly complex shapes necessarily require increasing numbers of distinct types of tiles. We explore the possibility of complex and efficient assembly using systems consisting of a single tile. Our main result shows that any system of square tiles can be simulated using a system with a single tile that is permitted to flip and rotate. We also show that systems of single tiles restricted to translation only can simulate cellular automata for a limited number of steps given an appropriate seed assembly, and that any longer-running simulation must induce infinite assembly.
منابع مشابه
One Tile to Rule Them All: Simulating Any Turing Machine, Tile Assembly System, or Tiling System with a Single Puzzle Piece
In this paper we explore the power of tile self-assembly models that extend the well-studied abstract Tile Assembly Model (aTAM) by permitting tiles of shapes beyond unit squares. Our main result shows the surprising fact that any aTAM system, consisting of many different tile types, can be simulated by a single tile type of a general shape. As a consequence, we obtain a single universal tile t...
متن کاملIntrinsic universality and the computational power of self-assembly
Molecular self-assembly, the formation of large structures by small pieces of matter sticking together according to simple local interactions, is a ubiquitous phenomenon. A challenging engineering goal is to design a few molecules so that large numbers of them can self-assemble into desired complicated target objects. Indeed, we would like to understand the ultimate capabilities and limitations...
متن کاملUniversality in algorithmic self-assembly
Tile-based self-assembly is a model of “algorithmic crystal growth” in which square “tiles” represent molecules that bind to each other via specific and variable-strength bonds on their four sides, driven by random mixing in solution but constrained by the local binding rules of the tile bonds. In the late 1990s, Erik Winfree introduced a discrete mathematical model of DNA tile assembly called ...
متن کاملIntrinsic Universality in Self-Assembly
We show that the Tile Assembly Model exhibits a strong notion of universality where the goal is to give a single tile assembly system that simulates the behavior of any other tile assembly system. We give a tile assembly system that is capable of simulating a very wide class of tile systems, including itself. Specifically, we give a tile set that simulates the assembly of any tile assembly syst...
متن کاملThe Tile Complexity of Linear Assemblies
Self-assembly is fundamental to both biological processes and nanoscience. Key features of self-assembly are its probabilistic nature and local programmability. These features can be leveraged to design better self-assembled systems. The conventional Tile Assembly Model (TAM) developed by Winfree using Wang tiles is a powerful, Turing-universal theoretical framework which models varied self-ass...
متن کامل